

The big new feature support for crosslinking. This and the Quantitation Summaries features and improvements to how we search for Modifications are covered in separate talks.

In this talk I will cover the following topics:

We've added full support for a comprehensive range of crosslinking scenarios. This includes editors for the crosslinking agents and methods, fragmentation patterns in peptide_view and exports to xiVIEW for further visualization.

Mascot can report all the different types of links from looped, Inter and Intra links and incomplete mono links.

Mascot Server 2.7 has better site localisation by introducing separate caps on the number of distinct modifications in a PSM, the number of modified sites in a PSM, and the total number of arrangements to be tested.

Mascot Server 2.6 worked well but had limitations. If a peptide has less than 16 possible variable modification permutations, then there are no issues as all possibilities are tested. It's in the cases where the peptide has more than 16 possible permutations that issues can arise. The sliding window method tends to cluster modifications on adjacent modifiable sites, and it will often stop before 16 different permutations have been tested.

In Mascot 2.7 we've taken a different approach. We use a single, consistent permutation method – there's no switching between different methods. The new permutation iterator samples arrangements using a uniformly random scheme. The operation of this is controlled by 3 user definable settings.

By adjusting the parameters you can choose to reduce the search depth and speed up searches of lightly modified samples or increase the search depth where site localization matters or for highly modified samples.

)	Mascot Dae	mon			_ = = 💌
File Edit Help					
Status Event Log Task Editor Parameter Editor					
0EP1 Solvala 230914 3 3pg 23091	Inn a Guta Tak	Baramatar sat	Data incost films	Cohed in here New Rive only	Sh destrict a
QEP1_Spkein_230914_4_7-5ng_270	14 m Completed 911 Copy of bug 12515	buo12616.par	- None -	now	1 Sub-Grectione
GEP1_Spkein_230914_5_7-5ng_270	14 ra ecompleted \$12 Copy of Copy of bug 1.	bug12616.par	- None	now	
GEP1_Spikeln_230914_6_7.5ng_270	14.m ecompleted \$13. Copy of PMF AA	pref par	- None -	now	
GEP1_spikein_230914_/_10ng_2709	Arm completed 914 bug 12730	short par	- None -	now	
GEP1 Spikeln 230914 9 10ng 2709	14 ray	short.par	Mascot Datilier	now	
QEP1_Spikein_230914_10_15ng_270	914 m completed 916 bug 13222	short par	Mascot Distiller	now	
GEP1_Spkeln_230914_11_15ng_270	914.m ecospeted 917.bug 13222	short par	Mascot Distiller	now	
GEP1_Spikeln_230914_12_15ng_270	914.m	and part of	Mancat Datiler	TOW .	
 Sub-Weizmann LPG (achon-en) Sold Weizmann (ED Kalchon-en) 	Open merged search report	and the second second	Mascol Datiley		
GEP1 Sokein 230914 1 3ng 27091	Cuantitation summary	New same	nie man		
GEP1_Spikeln_230914_2_3ng_27091	Fizer completed acc copy of copy	P Load sam	nia man	new	
GEP1_Spikein_230914_3_3ng_27091	Araw Completed 923: multi ratio test	m	hur mah m	now	
GEP1_Spkein_230914_4_7-5ng_270	14.ra completed 324 Weizmann LFG	weizmann par	Mascot Datiler	now	
GEP1_spikein_230914_5_7/5/g_270	14 ra Canceled 325 Wesmann LFQ faich	weizmann-fi par	Mascot Chiller	now	
GEP1_Sokein_230914_7_10ng_2709	14.78 Completed 325 Weighter UPG Fach	weizmaren i par	Mascet Datiler	DOW	
GEP1_Spikeln_230914_8_10ng_2709	14 m Boaused 928 maxbuart 2.4.1 decov	maxquart2 par	Mascot Datiler	now	
GEP1_Spikein_230914_9_10ng_2709	14.m ecompleted 329 maxquart 2.5.0 no de	maxquart2.par	Mascot Datiler	now	
GEP1_Spikeln_230914_10_15ng_270	914 m en completed 930: (TRAQ8 2.5.1	(TRAGS par	- None -	now	
GEPT SOKEN 230914 11 1900 270	completed 932 TMT 2.6	TMTEpar	Mascot Datiller	now	~
OFP1 Sokeln 230914 12 15on 220					
GEP1_Spikein_230914_12_15ng_270	3 C	200	2.0)
 GEP1_Spikein_230914_12_15ng_270 	3 C				>

-

The Quantitation Summaries feature in Mascot Daemon allows you to select one or more tasks and create a sample map.

Task Task name Raw file path Rew file name Parameter set Fasta(s) Submitter Fraction Veternity LF 504 Wessen UQ Valagoy nationa. GEP1_Solehi,220114_1_brg_2707014.em wessen per excl_proteome 66/02/015 172. 1 3rg 504 Wessen UQ Valagoy nationa. GEP1_Solehi,220114_2_brg_2707014.em wessen per excl_proteome 66/02/015 102. 2 3rg 504 Wessen UQ Valagoy nationa. GEP1_Solehi,220114_2_brg_270914.em wessen and coll proteome 66/02/015 102. 2 3rg 504 Wessen UG Valagoy nationa. GEP1_Solehi,220114_2_r6g_270914.em wessen and per 66/02/015 102. 2 3rg 504 Wessen UG Valagoy nationa. GEP1_Solehi,220114_2_r6g_270914.em wessen and per exist person_per 66/02/015 102. 2 7sg 504 Wessen UG Valagoy nationa. GEP1_Solehi_220114_2_r6g_270914.em wessen per 66/02/015102. 2 7sg 504 Wessen UG Valagoy nationa. GEP1_Solehi_220114_r6_
S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_1_brg270014.ms weemann par cold_pretone06/08/2019172. 1 3rg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_2_brg_270014.ms weemann par cold_pretone06/08/2019172. 1 3rg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_2_brg_270014.ms weemann par cold_pretone06/08/201918.1. 3 rg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_4_76/09,270014.ms weemann par cold_pretone06/08/201918.2. 3 rg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_4_76/09,270014.ms weemann par cold_pretone06/08/2019192. 1 7 fsg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_276/09,270014.ms weemann par cold_pretone06/08/2019192. 1 7 fsg S24 Weemann L/D Valagoy natrisos. DEPL Solvein_220014_276/09,270014.ms weemann par cold_pretone06/00/20192.0. 2 7 fsg S24 Weemann L/D Valagoy natrisos. DEPL Solvein 220014_276/09,27010
S24 Weizern L/G Vidapy matrice. DEPL Splich, 220114, 2, 3rg, 270314.sev veizeran par cost junctione 06/08/2013 18.0. 2 3rg S24 Weizern L/G Vidapy matrice DEPL Splich, 220114, 2, 3rg, 270314.sev veizeran par cost junctione 06/08/2013 18.0. 2 3rg S24 Weizern L/G Vidapy matrice DEPL Splich, 220114, 2/3rg, 270314.sev veizeran par cost junctione 06/08/2013 19.2. 3 3rg S24 Weizern L/G Vidapy matrice DEPL Splich, 220114, 2/3rg, 270314.sev veizeran par cost junctione 06/08/2013 19.2. 1 7/5rg S24 Weizern L/G Vidapy matrice DEPL Splich, 22014, 4, 2/3rg, 270314.sev veizeran par cost junctione 06/08/2013 20.2. 7/5rg S24 Weizeran L/G Vidapy matrice DEPL Splich, 22014, 5, 2/3g, 270314.sev veizeran par cost junctione 06/08/2015 20.2. 7/5rg S24 Weizeran L/G Vidapy matrice DEPL Splich, 22014, 5, 2/3g, 270314.sev veizeran par cost junctione 06/08/2015 20.4
S24 Weizmann LFG Videpty matrices. DEPL_Solich_23014_3_brg_27014.ms weizmann par ecsl_proteome 06/08/2019 184. 3 3rg S24 Weizmann LFG Videpty matrices. DEPL_Solich_22014_4_75/0g_27014 rate weizmann par ecsl_proteome 06/08/2019 192. 1 7/5/g S24 Weizmann LFG Videpty matrices. DEPL_Solich_22014_5_7/6g_27014 rate weizmann par ecsl_proteome 06/08/2019 192 1 7/5/g S24 Weizmann LFG Videpty matrices. DEPL_Solich_22019 15_7/6g_27014 rate weizmann par ecsl_proteome 06/08/2019 200 2 7/5/g S24 Weizmann LFG Videpty matrices. DEPL_Solich_22019 15_7/6g_27014 rate weizmann par ecsl_proteome 06/08/2019 200 2 7/5/g S24 Weizmann LFG Videpty matrices. DEPL_Solich_22019 15_7/g_27014 rate weizmann par ecsl_proteome 06/08/2019 20
S24 Warmann LFG Videpty-mitroso. OEPL_Soleth.200114_2-769_270914.rsv westmam pare exit_partscore 66/02/015 92 1 7.5rg 524 Wasmann LFG Videpty-mitroso OEPL_Soleth.200114_2-769_270914.rsv westmam pare exit_partscore606/02/015 92 1 7.5rg 524 Wasmann LFG Videpty-mitroso OEPL_Soleth.200114_2-769_270914.rsv westmam pare exit_partscore606/02/015 92 2 7.5rg 524 Wasmann LFG Videpty-mitroso OEPL_Soleth.200114_2-769_270914.rsv westmam pare exit_partscore606/02/015 92.4 3 7.5rg 524 Wasmann LFG Videpty-mitroso OEPL_Soleth.200114_27.5rg 7.5rg 7.5rg 524 Wasmann LFG Videpty-mitroso OEPL_Soleth.200114_27.5rg 7.5rg 7.5rg
S24 Weamann LPQ Validopy matriced. OEP1_Spikeln_220914_5_7_5frg220914.rsw weamann par ecol_proteome 06:00.2019 200 2 7.5ng S24 Weamann LPQ Validopy matriced. OEP1_Spikeln_220914_5_7_5frg220914.rsw weamann par ecol_proteome 06:00.2019 204 3 7.5ng
924 Weizmann LFQ Vakippy matrixaci. QEP1_Spikeln_230914_6_7-5ng_270914.raw weizmann par ecol.proteome 06/08/2019.20.4. 3 7.5ng
924 Weizmann LFQ Vakippy matrixaci. GEP1_Spikein_230914_7_10ng_270914.raw weizmann par ecol_proteome 06/08/2019.21.1. 1 10ng
S24 Weizmann LFQ \\skppy matrixec. QEP1_Spikeh_230914_8_10ng_270914.raw weizmann par ecol_proteome_ 06/08/2019 22:0_ 2 10ng
S24 Weizmann LFQ \validadgey methods: QEP1_Splaceh_230914_9_10ng_270914.rpw weizmann par eccl_proteome06/08/2019.22.4 3 10ng
924 Weizmann LFQ \/skippy.matrixac QEP1_Spkein_230914_10_15ng_270914.raw weizmann.par ecol_proteome 06/08/2019.23.2 1 15ng
924 Weizmann LFQ \\u00edkippy matrixed. QEP1 Spikeln 230914 11 15ng 270914 raw weizmann par ecol proteome 07/08/2019 00.0 2 15ng
324 Weamam LFG \\\\deltappy matrixes. 0EP1_5gkets_220914_8_10pg_220914_me weamam par ecol_proteome0600201522.0_2 10ng 534 Weamam LFG \\\deltappy matrixes. 0EP1_5gkets_220914_8_10pg_220914_res weamam par ecol_proteome0000201522.0_2 10ng 534 Weamam LFG \\\deltappy matrixes. 0EP1_5gkets_220914_8_10pg_220914_res weamam par ecol_proteome0000201922.2_1 10ng 524 Weamam LFG \\\deltappy matrixes. 0EP1_5gkets_220914_10_15rg_220914_res weamam par ecol_proteome000201922.2_1 115rg 524 Weamam LFG \\\deltappy matrixes. 0EP1_5gkets_220914_10_15rg_220914_res weamam par ecol_proteome000201922.2_1 115rg 524 Weamam LFG \\\deltappy matrixes. 0EF1_5gkets_220914_110_15rg_220914_res weamam par ecol_proteome000201922.2_1 15rg
524 Weizmann LFG Vakopy metroso GEP1 Soletin 230914 9, 10ng 270914 raw weizmann par ecol. proteone 06/08/2019 22-4. 3 10ng
Oto Waimano LGO Visiona materia CEPT Socials 200512 10560 20050m Waimano and anti-anama Activity 2018 2015 1 156-0
924 Weizmann LFQ Viskippy matrixac QEP1_Spikeln_220914_10_15ng_270914.naw weizmann par ecol_proteome_ 06/08/2019 23.2. 1 15ng
324 Weaman DG Vakapy matrice. GEP1_spacer_20014_10_15ng_27/2514.taw weaman.par ecol_protectine05/06/2015 23.2 1 15ng
924. Weimann LFG Viskopy matrices. GEP1. Sokein 230914.11.15ng. 270914.ppv weimann par ecoli proteome. 07/03/2019.00.0 2. 15ng
1000 DOM 1 10000 DOM 1 1000 DOM 1 10000 DOM 1 1000

The Sample Map is used to annotate the list of result files with recognisable sample identifiers

M1 (1)															
MI CT .	5· 0·	4-1			LFQ meg	pe-yahity-K	Ant - Excel						7	10 - C	x
PLE	Menus	HOME INS	ERT PA	SE LAYOUT	FORMULAS DATA REV	EW VI	W ADD	INS TE	AM				- 10	hn Cuttrell	- 17
Al- He-	Edt - Vie	e - inset - Fr	ormat - Tor	ols . Data -	Window+ Help+										
0 = 8	8116-	白崎鼠鼠	-1345	1X Pa d	5- 8 2-19- C -183	$\Sigma \cdot f_1 \cdot$	11117	· (計· - a)	14 · III	0	Q				
Calibri	+ 11 +	B X N -1	1 1 1		IEI + IP General + 12 + %	1.12.2	A A	HE 4E 1 []	· <u></u>	1.00-1	Ð.				
					leobas										^
CI		XY.	fr 2:00	96733											4
.d A		c	0			6	H	- E	1	×.	4	M	. N	0	1
									and the second						
			Peptide	Peptide		Peptide	peptide	Peptide	peptide	Peptide	peptide	Peptide	peptide	Mol.	
Family	Memb	er	counts	counts		XICs	XICs	XICs	KICS	XICs	XICs	XICs	XICs	weight	Sec.
1 index	index	Protein IOs	(116)	(unique)	Fasta headers	[3ng]	[log]	[7.5ng]	[7.5ng]	[10ng]	[10ng]	[15ng]	[15ng]	[kDa]	ek
2	1	1 3::P06733	3	7 31	Alpha-enolase 05-Homo sapie	13	9 11	147	129	141	123	136	117	47481	
3	1	2 1::P13929		7 1	Beta-enolase OS+Homo sapier	1 2	1	20	2	19	1	22		47299	
4	2	1.3.2907900		s 4) s 3/	Heat shock protein HSP 90-aipr	19	5 2.5	130	112	134	112	182	327	83000	
2	2	3 3:014625		4 24	Fordoolastein OSatiomo canien			1 1/3	- 113	1/3	71	1/2	200	92696	
7	2	4 1:012931	1	2 11	Heat shork protein 75 kDa, mit			11	16	21	19	18	11	60345	
	3	1 2:005787	5	2 4	SWISS-PROT:P05787 Tax Id=96	1 16	3 13	159	137	157	132	162	137	53671	
9	3	2 3::P08670	4	6 43	Vimentin OS+Homo sapiens OI	13	5 12	1 124	113	125	114	132	120	53676	
18	3	3 2::Q3KNV1	3	6 2	TREMBLIQ3KNV1;Q96GE1 Tax		4 3	87	5	93	2	86	3	51411	
33	1	4 2::P08729	3	5 1	SWISS-PROT:PO8729 Tax_Id=96	έ 9.	2	82	0	.94	3	83	0	51443	
12	3	5 3::K7EPT8		7 4	Glial fibrillary acidic protein (Fi	(1)	E	19		20	9	19	7	8373	
13	3	6 2::Q5N0H9		6 1	TREMBLIGENXH9 Tax_Id+10090	1	5 (3 13	1	17	0	16	1	59502	
14	1	7 3::K7[PH		1 1	Glial fibrillary acidic protein (fi	1 1	0	10			0		0	14086	
12		8 21038465			SWISS-PROTIUSANES TAX_IDPR			1 10		10		- 10	1	50039	
17	4	1 1-021333		8 7	Filamin A Of deams caniers O	18	17	187	1.74	190	180	193	183	283301	
18	4	2 1:075369-		3 7	/ isoform 8 of Filamin-B OSHIOR	15	5 14	156	145	167	157	157	548	283626	
18	5	1 1:P13639	6	1 60	Elongation factor 2 OS=Homo s	16	3 16	170	169	169	168	167	166	96246	
				0											
	100	and the second s													

And Daemon creates and saves the Quantitation Summary, a tab delimited text file which is the input file for statistical analysis. This can then be used with anything from Excel to Perseus or a programming environment like R.

Go and see the presentation if you would like to see examples of what you can do with the output. If you would like to know more about crosslinking or the changes to modification detection check out those respective presentations as well.

The new Protein FDR value is automatically calculated when the decoy search option is selected.

It is displayed above the peptide/PSM decoy results.

Protein FDR is based on the following assumptions and definitions:

By default the protein family report only shows peptide sequence matches (PSMs) with significant scores and are used for the protein family assignment.

A protein family member may represent multiple same set proteins. Only members of all the protein families in the report, those that contain a unique peptide, are counted.

Protein count used for FDR is count of family members. That is, if the report contains 2 families, one with 4 members and the other with a single member, this counts as a total of 5 proteins. Same-set, sub-set and intersection proteins are not counted.

While a protein ID is a false positive when all the PSM's are false positives. Just one true PMS would make the protein identification a true positive. This is very important.

Given the number of proteins and the numbers of true and false peptide sequences we use a hypergeometric model to estimate the number of proteins that are truly false positive

The algorithm is a simplified approach to that used by MAYU, from the Aebersold group

https://www.mcponline.org/content/8/11/2405https://www.mcponline.org/content/8/11/2405

The main differences are that we do not make a separate estimate of the FDR for onehit wonders and we do not partition the database by protein size. We use a simpler estimate for the number of false proteins in the target database, based on the assumption that the number of decoy proteins never reaches a significant proportion of the database size.

Imagine the and the search results show 500 target proteins and 10 decoy proteins. Does this mean protein FDR is 10/500 = 2%? No, it does not. We can assume the false PSMs in the target are distributed across 10 proteins, but some of these will also contain true PSMs, so should not be counted as false. Since half the proteins in the target database contain true PSMs, a reasonable estimate would be that only 5 target proteins containing nothing but false PSMs, so that the protein FDR is 5/500 = 1%.

The default significance threshold for a Mascot search is usually 0.05 and this will often give a peptide FDR in the region of 5%. In this dataset the protein FDR is \sim 4.5%. If we want to lower the Protein FDR we can try adjusting the peptide FDR to 1%. In this case the default peptide FDR is already close to 1% so we can try adjusting the report other ways.

We can adjust the Minimum number of significant unique sequences. This has quite a strong affect on the Protein FDR. If we change it to 2 and eliminate the "one hit wonders" the protein FDR drops to 0.18%.

Adjusting the Protein FDR	
Format Significance threshold $p < (0.005 Max, number of families AUTO 2[help]$	
Display non-sig. matches D Min. number of sig. unique sequences 1 -	
Dendrograms cut at 0	
Preferred taxonomy All entries ~	
▼Sensitivity and FDR (reversed protein sequences)	
Target Decoy FDR	
Protein family members 4198 38 0.91%	
Sequences \checkmark above homology \checkmark 19483 49 0.25% Adjust to 1% \checkmark	
Decoy results are available in <i>"the decoy report.</i>	
MASCOT : New features in Mascot 2.7 © 2020 Matrix Science	TRIX ENCE

Alternatively if we can adjust the Significance threshold for the results. I took a guess and reduced it by a factor of 10 from the default values of 0.05 to 0.005 and clicked the format button. The resulting Protein FDR is approximately 1%.

The current HUPO guidelines Interpretation Guidelines for large-scale results recommend adjusting the settings to lower than 1% protein-level global FDR so after formatting this search result would meet those guidelines.

When interpreting the results a protein FDR of 1% only tells us that 1% of the proteins listed are wholly false. This doesn't mean the other 99% are "correct". In particular, where there are same-set proteins, we cannot say which one is "correct".

This is because database redundancy causes protein inference ambiguity and we can account for the PSM evidence using several sets of proteins. It is important to remember that a protein accession number in the summary report does not mean "this is the correct protein", it means "the correct protein is likely to be very similar to one of the set of proteins represented by this family member".

Mascot Server automatically searches for fragment ions as singly or doubly charged ions but not higher charge states.

Middle and top down analysis of large peptides and proteins can generate fragment ions with charge states of 3+ or higher.

In the past if you have fragment ions with higher charge states, you needed to deconvolute them to MH+.

This is supported by Mascot Distiller and is still the preferred method.

For software that does not decharge the peaks we added support for specifying the charge state in the third column of the peak list. So you have mass, intensity or area and now charge state. Any data in the later columns will be ignored.

The new feature is on by default and controlled by the "DechargeFragmentPeaks" configuration option.

DechargeFragmentPeaks is the maximum absolute charge state to be decharged and is set to 10 by default.

As we expect all the fragment ions in the peak list to be MH+ there is no need to search for 2+ ions. To improve the specificity of the search we recommend creating an instrument configuration that removes support for 2+ (precursor >2+) ion series.

The next feature is "Better filtering of modifications with complementary deltas in an error tolerant searches".

Error tolerant search results automatically remove matches where the delta of the modifications is less than smaller of the precursor or fragment ion tolerances. For example Q->K, in most cases.

In Mascot Server 2.7 we extend that filtering to remove matches with pairs of modifications that where the deltas sum to zero within the precursor tolerance.

Such matches allow the fragment masses to be shuffled around to get a better score while leaving the parent mass unchanged. These are almost always false, with the true match, without either mod, getting a slightly lower score.

Some examples of this are issues are:

Asn->Gly and Gln->Ala are exact inversions of Carbamidomethyl

Deoxy, Ser->Ala, and Tyr->Phe are exact inversions of Oxidation

Here I show the reporting of a peptide With a Carbamidomethyl modification at the N-terminal and an equivalent loss of 57Da Asn->Gly modification at the Ans 5 position. Expanding the top 10 matches of the peptide shows the unmodified peptide with a significant score 6th on the list.

In Mascot Server 2.7 all of the top 5 matches have been filtered out, and the bottom 4 too, leaving just the unmodified sequence match.

We added a new feature to Mascot Daemon which allows you to easily combine search results.

When working with fractionated samples you will want to combine the searches from multiple data files into a single result. The easy way to do this is with the "Merge MS/MS files into single search" option in Mascot Daemon. However if you are using the Windows operating system for your Mascot Server and the default IIS web server, you can hit a 4 GB upload limit.

There are a number of ways around this limit such as using Mascot Daemon on the same computer as Mascot Server, so the searches are submitted on the command line, moving from the IIS web server to Apache or using Mascot Distiller for peak picking and merging the results there. These are described in an older talk from 2015.

Now Mascot Daemon 2.7 gives you another way to merge searches. This is useful for when users are using msconvert or other peak picking third party tool and not using the merging features of Mascot Distiller.

Instead you can select multiple searches in a Mascot Daemon task by CTRL+click individually searches or shift+click a range then right click and choose combined report.

The combined search will open in a web page and list the results files that have been merged at the top of the report.

This will work with searches that have been processed by any peak picking software including Mascot Distiller.

MGF expor	rting spectra in the original
	terr Security (CODDI StatisticHer Mouse HS data RE: DUNCODDINg/Nergod mgt Databases: 1::::049 2010000 (118 sequences; 204,09 maldue;) Databases: 1::::049 201000 (112::05 Normanice; 204,000 maldue;) Databases: 1:::049 2014 (112::05 Normanice; 2
	Export search results Help
	Export format MGF Peak List
	Show command line arguments Export search results
MASCOT : New fe	eatures in Mascot 2.7 © 2020 Matrix Science MATRIX

This next feature requires some background. When a peak list is submitted to Mascot, the neutral molecular mass (Mr) is calculated for each precursor and queries are sorted lowest to highest. The precursors are given a new index number based on this sorting.

You can run into a problem related to the change in order of the precursors in an MGF file when using search results with third party analysis software. When generating a mzIdentML file from the Mascot Server search results the spectrum IDs field in the mzIdentML file refer to the original MGF file precursor order.

Some third-party analysis software, such as the PRIDE submission tool, maps the data in the MGF file to the data in the mzIdentML file. If a collaborator exports the search results from Mascot but does not have access to the original mgf file they can export it from the search results.

In Mascot Server 2.6 the newly created MGF file is exported in the sorted order of the precursors, not the original order, the mapping between the mzIdentMl file and the MGF file will fail and the collaborator is left thinking that the either Mascot Server or the third party tool is broken. To prevent this misunderstanding the MGF file can now be exported with the precursors in the original order to maintain mapping compatibility.

To put the new feature to use go to the Export menu, choose MGF Peak list, and it is the default option.

In 2008 the Proteomics Standards Initiative released community standards for representation of protein modification data by use of a consensus nomenclature. Prior to that there were there were some differences in modification names between search engines and research groups. Also some of the old names or acronyms did not meet the new guidelines. Some of the modifications had a common name but it did not conform to the new standards, for example "Sodiated" = "Cation:Na". Or used a lab acronyms "CAM" = "Carbamidomethyl".

These names live on in old data sets some of which have been used to create spectral libraries that are publicly available from NIST. Mascot Server could not match these modification names to the newer ones and would report an error for those spectra, effectively excluding them from the library.

To fix this we have introduced an aliases file that maps the old names on to the new names.

The aliases file resides in the Mascot/config directory and is preconfigured with 46 common aliases and acronyms.

It is extendible as well.