

I'd like to talk about some improvements we've made in the reporting of Error Tolerant search results

An error tolerant search is the most efficient way to find unsuspected modifications, non-specific cleavage products, and sequence variants.

Your name	JSC	Email	jcottrell@matrixscience.com	
Search title				
Database(s)	contaminants (AA) UP5640_H_sapiens (AA)	×	Amino acid (AA) cRAP SARS-CoV-2 SwissProt UP1866089_X_laevis UP1940_C_elegans UP21950_D_discoideum UP219602_F_oxysporum UP2311_S_corevisiae UP241690_T_harzianum	
Taxonomy	All entries	~		
Enzyme	Trypsin/P 🗸	Allow up to	2 V missed cleavages	
Quantitation	None 👻			
Crosslinking	None	~	St	
Fixed modifications	Carbamidomethyl (C)	> <	Acetyl (K) Acetyl (N-term) Acetyl (Protein N-term) Amidated (C-term) Amidated (Protein C-term)	·
Variable modifications	Display all modifications	>	Ammonia-loss (N-term C) Carbamidomethyl (N-term) Carbamyl (K) Carbamyl (N-term) Carboxymethyl (C) Cation:Na (C-term)	•
Peptide tol. ±	10 ppm • # ¹³ C 0 •	MS/MS tol. ±	0.1 Da 👻	
Peptide charge	2+ and 3+ 🗸	Monoisotopic	Average	
Data file	Choose file No file chosen			
Data format	Mascot generic 🖌	Precursor	m/z	
Instrument	ESI-TRAP ¥	Error tolerant		-
<u>Decoy</u>		Target PSM FDR	1% -	
	Start Search		Reset Form	

The big difference in Mascot Server 2.8 is that we now use target-decoy to assign significance to the all matches, including those found in the second pass search.

As in previous releases, all you need to do to perform an error tolerant search is to check a box on the search form.

In Mascot Server 2.8, you can (and should) also check the box to use target-decoy. Without a decoy, expect values are derived from counting trials – that is, the number of candidate peptides that have been tested. This estimate is not always accurate; particularly when there is something wrong with the choice of database or search parameters, making a large fraction of potential matches unavailable. Ticking the checkbox to search a decoy database gives a solid, empirical basis for the statistics.

There is also a control to specify the required false discovery rate. The reason we ask for is up front is that the FDR determines the set of proteins selected for the second pass search. For example, the first pass search might identify significant peptide matches to 500 proteins at an FDR of 5%, and these are sent through to the second pass. If the FDR was reduced to 1%, the number of proteins selected for the second pass might drop to 400. Although the FDR can be tweaked at the report stage, this will not give perfectly identical results to setting the required FDR in the search form.

▼Sensitivity and FDR (reversed	l protein sequ	ences)		
	Target Dec	by FDR		
Protein family members	59 0	0.00%		
PSMs v above homology v	4279 42	0.98%		
Note: Protein FDR 0% means then protein hits for a meaningful FDR of	e are not enoug calculation.	h decoy		
Significance threshold for first pass	s search is 0.02	075, and second pass search	0.05448. Target PSM FDR from co	mbined first and second pass searches is 1% .
Decoy results are available in <mark>⊠the</mark>	e decoy report.			
Proteins (59) Report Builde	er <u>Unassign</u>	<u>ed (22268)</u>		
Protein families 1–10 (o	ut of 44)			
10 v per page 1 2 3	4 <u>5</u> <u>Next</u>	Expand all Collapse all		
Accession	ins 🗸		Find Clear	
▶1		::P04264 ::P35908	12581 5826	SWISS-PROT:P04264 Tax_Id=9606 Gene_Symbol=KRT1 SWISS-PROT:P35908 Tax_Id=9606 Gene_Symbol=KRT2
		::P02538	1977	SWISS-PROT:P02538 Tax_Id=9606 Gene_Symbol=KRT6/
<u> </u>	5 1	::P13647	1772 1532	SWISS-PROT:P04239 Ia2_Id=9006 Gene_Symbol=KR10 SWISS-PROT:P13647 Tax_Id=9606 Gene_Symbol=KRT5
88888	0 0			
12(8) 6)	R			
▶2	1 2	HSP72_YEAST	10625	Heat shock protein SSA2 OS=Saccharomyces cerevisiae (
	32	HSP71_YEAST	5160	Heat shock protein SSA1 OS=Saccharomyces cerevisiae (Heat shock protein SSA4 OS=Saccharomyces cerevisiae (
	4 2	::HSP73_YEAST	4255	Heat shock protein SSA3 OS=Saccharomyces cerevisiae
- L	5 2	BIP_YEAST	2728	Endoplasmic reticulum chaperone BiP OS=Saccharomyce
		SSB1_TEAST	1991	Ribosome-associated molecular chaperone 5561 05=540
	00			
a k a a k a k	a			
MASCOT :	Error to	lerant search s	tatistics © 2021 Matrix S	cience MAIRIX
				D SCIENCE

When the results come back, you have a single report that combines the results from both passes.

The required FDR is applied independently to the results from the first and second pass searches. Since this is based on counts of PSMs, it also holds true for the combined results.

Auto-fit to window									
Query Dupes	Observed 804.4050	Mr(expt) 1606.7955	Mr(calc) 1606.8025	ppm M -4.31 0	Score 81	Expect 3e-06	Rank	UU	Peptide N.FNGWTLDNDIMLIK.L
d12741 🕨 1	812.3828	1622.7511	1622.7536	-1.51 0	39	0.04	1	U	R.LGEHNIDVLEGNEQ.F + Carbamidomethyl (N-term)
d 13143 🕨 4	827.3561	1652.6976	1652.6923	3.23 0	84	8.1e-07	▶1	U	R. SCAAAGTECLISGWGN. T
z13307 🕨 1	830.9304	1659.8463	1659.8468	-0.25 0	68	6e-05	▶1	U	N. IDVLEGNEQFINAAK. I
z13830 🕨 1	855.8650	1709.7153	1709.7137	0.94 0	65	5.8e-05	▶1	U	R.SCAAAGTECLISGWGN.T + Carbamidomethyl (N-term)
13877 🕨 5	857.4082	1712.8018	1712.8006	0.70 0	58	0.0006	▶1	U	R.LGEHNIDVLEGNEQF.I
814490 🌬	883.8943	1765.7741	1765.7764	-1.29 0	48	0.005	▶1	U	R.SCAAAGTECLISGWGNTK.S + 2 [-1.0078 at C2,C9]
d14608 🕨 8	887.9519	1773.8892	1773.8897	-0.25 0	113	2.2e-09	▶1	U	H.NIDVLEGNEQFINAAK.I
814772	896.4172	1790.8199	1790.8258	-3.25 0	57	0.00082	▶1	U	R.SCAAAGTECLISGWGNTK.S + [-33.9877 at C9]
14785 2	897.4366	1792.8586	1792.8566	1.11 0	88	6e-09	1	U	K.VCNYVNWIQQTIAAN
15193 5	912.4043	1822.7940	1822.7978	-2.10 0	57	0.00066	1	U	R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term); 2 [-1.0078 at C2
15293 3	916.4605	1830.9065	1830.9111	-2.56 0	93	2.6e-07	1	U	H.NIDVLEGNEQFINAAK.I + Carbamidomethyl (N-term)
#15889 Þg	941.9230	1881.8313	1881.8349	-1.90 0	114	8.5e-12	1	U	R. SCAAAGTECLI SCWGNTK. S
815890	628.2845	1881.8317	1881.8349	-1.72 0	48	3.56-05	1	U	R.SCAAAGTECLISGWGNTR.S
815914	628.6180	1882.8323	1882.8189	7.09 0	44	0.014	P 1		R.SCAAAGTECLISGWGNTK.S + [+0.9840 at N16]
216103 \$3	948.9313	1895.8480	1895.8506	-1.38 0	112	2.7e-09	1		R.SCAAAGTECLISGWGNTK.S + [+14.0156 at C-term K]
d16220	955.9276	1000 0501	1909.8298	5.70 0	54	4.40-00	1		R. SCHARGTECHISGWONTK.S + [+27,9949 at 11/1] Possible assignments
A16229	637.6266	1000 9645	1909.8662	-4.27 0	54	0.0018	1		R.SCARAGIECTISCHONTR.S + [+20.0313 at N10] Methyl (C-term) [+14.0
16242 44	057.0200	1000 9654	1909.8662	-0.90 0	117	0.00041	1		R. SCARAGIECTISCHONIK, S. + (+28.0313 at C-term +1-047 (-7) t
16287	956 4820	1910 9494	1910 9486	0.43.0	47	0 01	1		F UNTDVLPCNPOPTNAAK T
16330	957 9163	1913 8181	1913 8070	5 79 0	77	5 80-06	1	u.	B SCAAGTECLISCHONTE S + [+31 9721 ++ W14]
16432	962.9273	1923.8400	1923.8567	-8.68 0	85	1.2e-06	1	U	R. SCAAAGTECLISGWGNTK. S + Carbanidomethyl (N-term) : 1+42.0218 at C21
16434	642.2883	1923.8430	1923.8567	-7.13 0	50	0.0035	1	U	R. SCAAAGTECLISGWGNTK.S + [+42.0218 at C-term K]
16469 b1	963.9348	1925.8551	1925.8611	-3.12 0	65	0.00011	1	U	R.SCAAAGTECLISGWGNTK.S + [+44.0262 at G15]
16485	964,9608	1927,9069	1927,9098	-1.48 0	45	0.015	1	U	K. IITHPNFNGNTLDNDIM. L
16568	969,9386	1937.8627	1937.8611	0.80 0	47	0.0085	1	U	R.SCAAAGTECLISGWGNTK.S + [+56.0262 at \$12]
	070 4304	1938.8502	1938.8564	-3.21 0	85	4.7e-09	1	U	R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term)
16581 ka	370.4324								-

Expect values are reported for both first and second pass matches. In earlier versions of Mascot, an error tolerant search could not be combined with target-decoy, and expect values based on counting trials were only reported for first pass matches.

The way it works is that target and decoy proteins are treated as pairs. After the first pass search, when proteins are selected, each significant match, whether target or decoy, causes the relevant pair of target and decoy proteins to be selected for the second pass. This means that the target and decoy databases are of identical size and contain all significant peptide matches (PSMs) from the first pass.

If a query gets a significant match in the first pass search, this is what we report, and we blindly discard the second pass results for this query. Sometimes, this means a stronger match is missed, but to do otherwise would be statistically dishonest. For example, if the significance threshold for a particular query in the first pass search corresponds to a score of 40, and we get a match with a score of 52, this is what we report, even if the second pass search might give us an even better match. This is not ideal, but the alternative is to burden all matches with statistics based on both passes. To illustrate why this is a problem, imagine we were to look at the second pass results and find nothing better. Now, we have a larger search space and the score threshold has increased to 55, so we have to discard our first pass match with a score of 52 because it is no longer significant.

4 peptide matches	s (173 non-dup	licate, 781 du	iplicate)						
Auto-fit to window									
Query Dupes	Observed	Mr(expt)	Mr(calc)	ppm	M Score	Expect	Rank	U	Peptide
12574 2	804.4050	1606.7955	1606.8025	-4.31	0 81	3e-06	1	U	N.FNGNTLDNDIMLIK.L
612741 1	812.3828	1622.7511	1622.7536	-1.51	0 39	0.04	1	U	R.LGEHNIDVLEGNEQ.F + Carbamidomethyl (N-term)
	827.3561	1652.6976	1652.6923	3.23	0 84	8.1e-07	P1		R. SCAAAGTECLISGWGN. T
13307	830.9304	1659.8463	1659.8468	-0.25	0 68	6e-05	1	U	N.IDVLEGNEQFINAAK.I
13830 1	855.8650	1709.7153	1709.7137	0.94	0 65	5.8e-05	1	U	R.SCAAAGTECLISGWGN.T + Carbamidomethyl (N-term)
138// 15	857.4082	1712.8018	1712.8006	0.70	0 58	0.0006	11	0	R. LGEHNIDVLEGNEQF. 1
514490 P 4	883.8943	1765.7741	1765.7764	-1.29	0 48	0.005	1		R.SCAAGTECLISGWGNTR.S + 2 [-1.0078 at C2,C9]
14608 \$8	887.9519	1773.8892	1773.8897	-0.25	0 113	2.2e-09	11	0	H.NIDVLEGNEQFINAAK.1
14//2	896.4172	1790.8199	1790.8258	-3.25	0 57	0.00082	1	0	R.SCAAAGTECLISGWGNTK.S + [-33.9877 at C9]
14/85 12	897.4366	1792.8586	1792.8566	1.11	0 88	6e-09	1	0	K.VCNYVNWIQQTIAAN
15195 5	912.4043	1822.7940	1022.7978	-2.10	0 57	0.00066	1		R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term) / 2 [-1.00/8 at
15295 3	916.4605	1830.9065	1001 0240	-2.56	0 95	2.68-07	1		H. NIDVLEGNEQFINAAK.1 + Carbamidomethyl (N-term)
15000 09	629 2946	1001 0217	1991 9349	-1.30	0 49	2 50-05	1		R. NERARITEELEINUMENTEEN
15014	620.2045	1001.0317	1001.0349	7.00	0 44	0.014	1		R. SCARGIECEISCHONIK, S
(16103 ba	948 9313	1895 8480	1895 8506	-1 38	0 112	2 70-09			P SCARACTECLISCHONTER S + (#14 0156 at Catern X)
16220	955,9276	1909.8407	1909.8298	5.70	0 79	4.4e-06	1	U	R. SCAAAGTECLISGNGNTK, S + [+27, 9949 at 117]
16229	637.6266	1909.8581	1909.8662	-4.27	0 54	0.0018	1	U	R. SCAAAGTECLISGWGNTK, S + [+28.0313 at N16]
16242	637.6288	1909.8645	1909.8662	-0.90	0 60	0.00041		U	R. SCAAAGTECLISGWONTK. S + [+28.0313 at C-term K]
16244	955.9400	1909.8654	1909.8662	-0.45	0 117	8.5e-10	1	U	R. SCAAAGTECLISGWONTK. S + [+28.0313 at C-term K]
16287	956.4820	1910.9494	1910.9486	0.43	0 47	0.01	1	U	E. HNTDVLEGNROFTNAAK. T
f16330 ▶1	957,9163	1913.8181	1913,8070	5.79	0 77	5.8e-06	1	υ	R.SCAAAGTECLISGWGNTK.S + [+31.9721 at w14]
16432 1	962.9273	1923.8400	1923.8567	-8.68	0 85	1.2e-06	1	υ	R.SCAAAGTECLISGWGNTK.S + Carbamidomethvl (N-term); [+42.0218 at C
16434	642.2883	1923.8430	1923.8567	-7.13	0 50	0.0035	1	υ	R.SCAAAGTECLISGWGNTK.S + [+42.0218 at C-term K]
16469 1	963.9348	1925.8551	1925.8611	-3.12	0 65	0.00011	1	U	R.SCAAAGTECLISGWGNTK.S + [+44.0262 at G15]
16485	964.9608	1927.9069	1927.9098	-1.48	0 45	0.015	11	U	K. IITHPNFNGNTLDNDIM. L
16568	969.9386	1937.8627	1937.8611	0.80	0 47	0.0085	1	U	R.SCAAAGTECLISGWGNTK.S + [+56.0262 at \$12]
16581 14	970.4324	1938.8502	1938.8564	-3.21	0 85	4.70-09	1	U	R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term)
16582	647.2907	1938.8503	1938.8564	-3.15	0 28	0.002	11	U	R.SCAAAGTECLISGWGNTK.S + Carbamidomethyl (N-term)

Usually, the search space for the second pass search is larger than for the first pass. This means that the significance threshold is more stringent for second pass matches. Here, for example, query 16581 gets a score of 85 in the first pass search which corresponds to an expect value of 4.7E-9. Query 16432 gets the same score in the second pass search, but the expect value is 1.2E-6, worse by a factor of 250

Finally, some tips.

The Unimod database contains a large number of entries that you do not expect to find in a general search. You can reduce the search time by excluding isotopic labels and very large modifications, which rarely give strong matches. 1 kDa is a good cut-off. Typically, this reduces the number of modifications by a third.

Remember that the second pass search works through the list of modifications serially. It doesn't look for combinations of modifications on a single peptide. So, if you have a very abundant modification, affecting 10% or more of the peptides, it is a good idea to specify this as a variable modification, so that you can find matches to peptides with both the abundant modification and an additional unsuspected one.

		Target	Decoy	FDR		
Protein family members		59	0	0.00%		
PSMs v above hor	nology 🗸	4279	42	0.98%		
 Modification statistic. Modification 	s for all p Delta	rotein	tamilies Type	Site	. <u>Total.ma</u>	ntches
Carbamidomethyl	57.02	1464	variab	e N-term	644	
Oxidation	15.994	1915	variab	e M	554	
Non-specific cleavage	57.00	161	EI	-	543	
Carbamidomethyi	57.02	1464	rixed	C	400	
Ethyl	0.9840	1200		N torm	141	
Ethyl	28.03	13	ET	K	13	
Methyl	14 01	565	FT	E	30	
Guanidinyl	42.02	792	FT	N-term	27	
Methyl	14.01	565	ET	K	24	
Dehydro	-1.007	825	ET	C	22	
Deamidated	0.9840	016	ET	Q	22	
Dehydrated	-18.01	0565	ET	T	21	
Gln->pyro-Glu	-17.02	6532	ET	N-term	21	
A to al	42 010	0562	FT	N-term	17	

The example used for these screen shots was a search of LTQ-Orbitrap Velos data acquired by the Medical University of Graz and deposited in PRIDE project PXD002726. There is quite a bit of non-specific cleavage. N-term Carbamidomethyl was very common, so this was specified as a variable modification. The next most common modification is deamidation of asparagine, but it only affects 3% of the peptides, so it is not worth specifying as a variable modification.

Even when the FDR for PSMs is well controlled, the FDR for proteins will often be high for an error tolerant search because only a few entries are searched in the second pass.

Format	Significance thresho Target FDR (overrid Display non-sig. ma	old p< es sig. t itches	hreshold	0.02075 Max. number of familie 1% FDR type Min. number of sig. uni	es Ique sequences	AUTO PSM V	₫[help
	Error tolerant match	nes:		Reliable V Dendrograms cut at		0	
	Preferred taxonomy			All entries		~	
Sensitivity	and FDR (reversed	proteir	n seque	ces)			
		Targe	t Decoy	FDR			
Protein family	y members	88	20	22.73%			
PSMs 🗸	above homology 🗸	4279	42	0.98%			
Format	Significance thresh	old p<	thrashal	0.02075 Max. number of familie	es	AUTO	₫[helj
Format	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc	old p< les sig. I atches hes:	threshol	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable V Dendrograms cut at	es lique sequences	AUTO PSM v 2 v	₫[helj
Format	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc Preferred taxonomy	old p< les sig. I atches hes: /	threshol	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries	es lique sequences	AUTO PSM V 2 V 0	ď[help
Format	Significance thresh Target FDR (overrid Display non-sig. m Error tolerant matc Preferred taxonomy	old p< les sig. 1 atches hes: /	threshol	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries	es lique sequences	AUTO PSM v 2 v 0 v	ď[helţ
Format Sensitivity	Significance thresh Target FDR (overrid Display non-sig. m Error tolerant matc Preferred taxonomy and FDR (reversed	old p< les sig. I atches hes: / <i>proteil</i>	threshol	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries (ces)	es lique sequences	AUTO PSM v 2 v 0	ď[hel;
Format	Significance thresh Target FDR (overrid Display non-sig. m Error tolerant matc Preferred taxonomy and FDR (reversed	old p< les sig. 1 atches hes: / proteil Targe	threshol n seque	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries CCES) FDR 0.0007	es lique sequences	AUTO PSM v 2 v 0	₫[help
Format Sensitivity Protein famil	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc Preferred taxonomy and FDR (reversed y members	old p< les sig. 1 atches hes: / protein Targe 59	threshol n seque t Decoy	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries CCES) FDR 0.00%	es lique sequences	AUTO PSM v 2 v 0	ø[helµ
Format * Sensitivity Protein famil PSMs ~	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc Preferred taxonomy and FDR (reversed y members above homology ~	old p< les sig. t atches hes: / protein Targe 59 4279	threshold n seque t Decoy 0 42	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries FDR 0.00% 0.98%	es lique sequences	AUTO PSM v 2 v 0	ď[hel
Format *Sensitivity Protein famil PSMs ~	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc Preferred taxonomy and FDR (reversed y members above homology ~	old p< les sig. 1 atches hes: / proteil Targe 59 4279	threshol n seque t Decoy 0 42	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries CCES) FDR 0.00% 0.98%	es lique sequences	AUTO PSM v 2 v 0	⊿[hel
Format Sensitivity Protein famil PSMs ~	Significance thresh Target FDR (overrid Display non-sig. ma Error tolerant matc Preferred taxonomy and FDR (reversed y members above homology ~	old p< les sig. 1 atches hes: / protein Targe 59 4279	threshold n seque t Decoy 0 42	0.02075 Max. number of familie 1% FDR type Min. number of sig. un Reliable Dendrograms cut at All entries Cces) FDR 0.00% 0.98%	es lique sequences	AUTO PSM v 2 v t 0	₫[hel

In our example search, at 1% FDR for PSMs, the protein FDR is 23%, which sounds awful. This is simply because the 42 significant decoy matches are scattered randomly across 20 decoy proteins. If we increase the 'Min. number of sig. unique sequences' from 1 to 2 and choose 'Format', we eliminate one hit wonders, and the protein FDR drops to a more satisfactory 0%.